

2019-2020

THÈSE

pour le

DIPLÔME D'ÉTAT DE DOCTEUR EN MÉDECINE

Qualification en ENDOCRINOLOGIE – DIABETOLOGIE –

MALADIES METABOLIQUES

**SHOULD WE SCREEN FOR CANCER BY
IMAGING IN RAPID DETERIORATION OF
GLYCEMIC CONTROL IN DIABETIC
PATIENTS?**

A MONOCENTRIC FRENCH EXPERIENCE.

DOIT-ON DEPISTER PAR L'IMAGERIE UN CANCER CHEZ UN PATIENT
DIABETIQUE EN DESEQUILIBRE HYPERGLYCEMIQUE ?

UNE EVALUATION MONOCENTRIQUE FRANÇAISE.

VAILLANT Charly

Né le 23 septembre 1991 à Nantes (44)

Sous la direction de Mme le Dr ALLIX Ingrid

Membres du jury

M. le Professeur RODIEN Patrice | Président

Mme le Docteur ALLIX Ingrid | Directeur

M. le Professeur AUBE Christophe | Membre

M. le Docteur CAPITAIN Olivier | Membre

Soutenue publiquement le :
17 décembre 2020

ENGAGEMENT DE NON PLAGIAT

Je, soussigné VAILLANT Charly
déclare être pleinement conscient que le plagiat de documents ou d'une
partie d'un document publiée sur toutes formes de support, y compris l'internet,
constitue une violation des droits d'auteur ainsi qu'une fraude caractérisée.
En conséquence, je m'engage à citer toutes les sources que j'ai utilisées
pour écrire ce rapport ou mémoire.

signé par l'étudiant le **25/11/2020**

LISTE DES ENSEIGNANTS DE LA FACULTÉ DE SANTÉ D'ANGERS

Doyen de la Faculté : Pr Nicolas Lerolle

Vice-Doyen de la Faculté et directeur du département de pharmacie : Pr Frédéric Lagarce

Directeur du département de médecine : Pr Cédric Annweiler

PROFESSEURS DES UNIVERSITÉS

ABRAHAM Pierre	Physiologie	Médecine
ANNWEILER Cédric	Gériatrie et biologie du vieillissement	Médecine
ASFAR Pierre	Réanimation	Médecine
AUBE Christophe	Radiologie et imagerie médicale	Médecine
AUGUSTO Jean-François	Néphrologie	Médecine
AZZOUZI Abdel Rahmène	Urologie	Médecine
BAUFRETTON Christophe	Chirurgie thoracique et cardiovasculaire	Médecine
BENOIT Jean-Pierre	Pharmacotechnie	Pharmacie
BEYDON Laurent	Anesthésiologie-réanimation	Médecine
BIGOT Pierre	Urologie	Médecine
BONNEAU Dominique	Génétique	Médecine
BOUCHARA Jean-Philippe	Parasitologie et mycologie	Médecine
BOUVARD Béatrice	Rhumatologie	Médecine
BOURSIER Jérôme	Gastroentérologie ; hépatologie	Médecine
BRIET Marie	Pharmacologie	Médecine
CAILLIEZ Eric	Médecine générale	Médecine
CALES Paul	Gastroentérologue ; hépatologie	Médecine
CAMPONE Mario	Cancérologie ; radiothérapie	Médecine
CAROLI-BOSC François-xavier	Gastroentérologie ; hépatologie	Médecine
CHAPPARD Daniel	Cytologie, embryologie et cytogénétique	Médecine
CONNAN Laurent	Médecine générale	Médecine
COUTANT Régis	Pédiatrie	Médecine
CUSTAUD Marc-Antoine	Physiologie	Médecine
DE CASABIANCA Catherine	Médecine Générale	Médecine
DESCAMPS Philippe	Gynécologie-obstétrique	Médecine
D'ESCATHA Alexis	Médecine et santé au Travail	Médecine
DINOMAIS Mickaël	Médecine physique et de réadaptation	Médecine
DIQUET Bertrand	Pharmacologie	Médecine
DUBEE Vincent	Maladies Infectieuses et Tropicales	Médecine
DUCANCELLE Alexandra	Bactériologie-virologie ; hygiène hospitalière	Médecine
DUVAL Olivier	Chimie thérapeutique	Pharmacie
DUVERGER Philippe	Pédopsychiatrie	Médecine
EVEILLARD Mathieu	Bactériologie-virologie	Pharmacie
FAURE Sébastien	Pharmacologie physiologie	Pharmacie
FOURNIER Henri-Dominique	Anatomie	Médecine
FURBER Alain	Cardiologie	Médecine
GAGNADOUX Frédéric	Pneumologie	Médecine
GARNIER François	Médecine générale	Médecine
GASCOIN Géraldine	Pédiatrie	Médecine
GOHIER Bénédicte	Psychiatrie d'adultes	Médecine
GUARDIOLA Philippe	Hématologie ; transfusion	Médecine
GUILET David	Chimie analytique	Pharmacie
HAMY Antoine	Chirurgie générale	Médecine
HENNI Samir	Chirurgie Vasculaire, médecine vasculaire	Médecine
HUNAULT-BERGER Mathilde	Hématologie ; transfusion	Médecine
IFRAH Norbert	Hématologie ; transfusion	Médecine

JEANNIN Pascale	Immunologie	Médecine
KEMPF Marie	Bactériologie-virologie ; hygiène hospitalière	Médecine
LACCOURREYE Laurent	Oto-rhino-laryngologie	Médecine
LAGARCE Frédéric	Biopharmacie	Pharmacie
LARCHER Gérald	Biochimie et biologie moléculaires	Pharmacie
LASOCKI Sigismond	Anesthésiologie-réanimation	Médecine
LEGENDRE Guillaume	Gynécologie-obstétrique	Médecine
LEGRAND Erick	Rhumatologie	Médecine
LERMITE Emilie	Chirurgie générale	Médecine
LEROLLE Nicolas	Médecine Intensive-Réanimation	Médecine
LUNEL-FABIANI Françoise	Bactériologie-virologie ; hygiène hospitalière	Médecine
MARCHAIS Véronique	Bactériologie-virologie	Pharmacie
MARTIN Ludovic	Dermato-vénérérologie	Médecine
MAY-PANLOUP Pascale	Biologie et médecine du développement et De la reproduction	Médecine
MENEI Philippe	Neurochirurgie	Médecine
MERCAT Alain	Réanimation	Médecine
MERCIER Philippe	Anatomie	Médecine
PAPON Nicolas	Parasitologie et mycologie médicale	Pharmacie
PASSIRANI Catherine	Chimie générale	Pharmacie
PELLIER Isabelle	Pédiatrie	Médecine
PETIT Audrey	Médecine et Santé au Travail	Médecine
PICQUET Jean	Chirurgie vasculaire ; médecine vasculaire	Médecine
PODEVIN Guillaume	Chirurgie infantile	Médecine
PROCACCIO Vincent	Génétique	Médecine
PRUNIER Delphine	Biochimie et Biologie Moléculaire	Médecine
PRUNIER Fabrice	Cardiologie	Médecine
REYNIER Pascal	Biochimie et biologie moléculaire	Médecine
RICHARD Isabelle	Médecine physique et de réadaptation	Médecine
RICHOMME Pascal	Pharmacognosie	Pharmacie
RODIEN Patrice	Endocrinologie, diabète et maladies métaboliques	Médecine
ROQUELAURE Yves	Médecine et santé au travail	Médecine
ROUGE-MAILLART Clotilde	Médecine légale et droit de la santé	Médecine
ROUSSEAU Audrey	Anatomie et cytologie pathologiques	Médecine
ROUSSEAU Pascal	Chirurgie plastique, reconstructrice et esthétique	Médecine
ROUSSELET Marie-Christine	Anatomie et cytologie pathologiques	Médecine
ROY Pierre-Marie	Thérapeutique	Médecine
SAULNIER Patrick	Biophysique et biostatistique	Pharmacie
SERAPHIN Denis	Chimie organique	Pharmacie
TRZEPIZUR Wojciech	Pneumologie	Médecine
UGO Valérie	Hématologie ; transfusion	Médecine
URBAN Thierry	Pneumologie	Médecine
VAN BOGAERT Patrick	Pédiatrie	Médecine
VENIER-JULIENNE Marie-Claire	Pharmacotechnie	Pharmacie
VERNY Christophe	Neurologie	Médecine
WILLOTEAUX Serge	Radiologie et imagerie médicale	Médecine

MAÎTRES DE CONFÉRENCES

ANGOULVANT Cécile	Médecine Générale	Médecine
BAGLIN Isabelle	Chimie thérapeutique	Pharmacie
BASTIAT Guillaume	Biophysique et biostatistique	Pharmacie
BEAUVILLAIN Céline	Immunologie	Médecine
BELIZNA Cristina	Médecine interne	Médecine
BELLANGER William	Médecine générale	Médecine
BELONCLE François	Réanimation	Médecine
BENOIT Jacqueline	Pharmacologie	Pharmacie
BIERE Loïc	Cardiologie	Médecine
BLANCHET Odile	Hématologie ; transfusion	Médecine
BOISARD Séverine	Chimie analytique	Pharmacie
CAPITAIN Olivier	Cancérologie ; radiothérapie	Médecine
CASSEREAU Julien	Neurologie	Médecine
CHAO DE LA BARCA	Juan-Manuel	Médecine
CHEVALIER Sylvie	Biologie cellulaire	Médecine
CLERE Nicolas	Pharmacologie / physiologie	Pharmacie
COLIN Estelle	Génétique	Médecine
DERBRE Séverine	Pharmacognosie	Pharmacie
DESHAYES Caroline	Bactériologie virologie	Pharmacie
FERRE Marc	Biologie moléculaire	Médecine
FORTRAT Jacques-Olivier	Physiologie	Médecine
HAMEL Jean-François	Biostatistiques, informatique médicale	Médicale
HELESBEUX Jean-Jacques	Chimie organique	Pharmacie
HINDRE François	Biophysique	Médecine
KHIATI Salim	Biochimie et biologie moléculaire	Médecine
JOUSSET-THULLIER Nathalie	Médecine légale et droit de la santé	Médecine
JUDALET-ILLAND Ghislaine	Médecine Générale	Médecine
KUN-DARBOIS Daniel	Chirurgie Maxillo-Faciale et Stomatologie	Médecine
LACOEUILLE Franck	Biophysique et médecine nucléaire	Médecine
LANDREAU Anne	Botanique/ Mycologie	Pharmacie
LEBDAI Souhil	Urologie	Médecine
LEGEAY Samuel	Pharmacocinétique	Pharmacie
LE RAY-RICHOMME Anne-Marie	Pharmacognosie	Pharmacie
LEPELTIER Elise	Chimie générale	Pharmacie
LETOURNEL Franck	Biologie cellulaire	Médecine
LIBOUBAN Hélène	Histologie	Médecine
LUQUE PAZ Damien	Hématologie; Transfusion	Médecine
MABILLEAU Guillaume	Histologie, embryologie et cytogénétique	Médecine
MALLET Sabine	Chimie Analytique	Pharmacie
MAROT Agnès	Parasitologie et mycologie médicale	Pharmacie
MESLIER Nicole	Physiologie	Médecine
MOUILLIE Jean-Marc	Philosophie	Médecine
NAIL BILLAUD Sandrine	Immunologie	Pharmacie
PAILHORIES Hélène	Bactériologie-virologie	Médecine
PAPON Xavier	Anatomie	Médecine
PASCO-PAPON Anne	Radiologie et imagerie médicale	Médecine
PECH Brigitte	Pharmacotechnie	Pharmacie
PENCHAUD Anne-Laurence	Sociologie	Médecine
PIHET Marc	Parasitologie et mycologie	Médecine
PY Thibaut	Médecine Générale	Médecine
RAMOND-ROQUIN Aline	Médecine Générale	Médecine
RINEAU Emmanuel	Anesthésiologie réanimation	Médecine
RIOU Jérémie	Biostatistiques	Pharmacie
ROGER Emilie	Pharmacotechnie	Pharmacie
SAVARY Camille	Pharmacologie-Toxicologie	Pharmacie
SCHMITT Françoise	Chirurgie infantile	Médecine

SCHINKOWITZ Andréas	Pharmacognosie	Pharmacie
SPIESSER-ROBELET Laurence	Pharmacie Clinique et Education Thérapeutique	Pharmacie
TANGUY-SCHMIDT Aline	Hématologie ; transfusion	Médecine
TESSIER-CAZENEUVE Christine	Médecine Générale	Médecine
VENARA Aurélien	Chirurgie générale	Médecine
VIAULT Guillaume	Chimie organique	Pharmacie

PROFESSEURS EMERITES

Philippe MERCIER	Neurochirurgie	Médecine
Dominique CHABASSE	Parasitologie et Médecine Tropicale	Médecine
Jean-François SUBRA	Néphrologie	Médecine

AUTRES ENSEIGNANTS

AUTRET Erwan	Anglais	Médecine
BARBEROUSSE Michel	Informatique	Médecine
BRUNOIS-DEBU Isabelle	Anglais	Pharmacie
CHIKH Yamina	Économie-Gestion	Médecine
FISBACH Martine	Anglais	Médecine
O'SULLIVAN Kayleigh	Anglais	Médecine

PAST

CAVAILLON Pascal	Pharmacie Industrielle	Pharmacie
LAFFILHE Jean-Louis	Officine	Pharmacie
MOAL Frédéric	Pharmacie clinique	Pharmacie

ATER

KILANI Jaafar	Biotechnologie	Pharmacie
WAKIM Jamal	Biochimie et chimie biomoléculaire	Médecine

Mise à jour au 09/12/2019

REMERCIEMENTS

Au Pr RODIEN, pour son accueil et pour la formation qu'il m'a délivré tout au long de mon internat.

À Ingrid ALLIX, pour sa patience, sa gentillesse et son accompagnement.

Au Pr AUBE et au Dr CAPITAIN, pour l'attention portée à ce travail.

Aux Nantais, qui ont fait naître une vocation : Maëlle LE BRAS, Bertrand CARIOU, Delphine DRUI, Eric MIRALLIE, Lucy CHAILLOUS.

Aux Angevins, qui l'ont fait grandir : Séverine DUBOIS, Frédéric ILLOUZ, Claire BRIET, Agnès SALLE, Sandrine LABOUREAU, Antoine HAMY, Régis COUTANT, Aurélie DONZEAU, Natacha BOUHOURS.

Aux Manceaux, qui la nourrisse chaque jour : Erell GOUZIEN, Anne DORANGE, Laure METAYER, et mes internes...

À l'ensemble des équipes médicale et paramédicale du CHU d'Angers, du CHU de Nantes, du CH du Mans et des Hôpitaux Universitaires du Grand Ouest, pour ces 11 années, j'espère vous faire honneur dans l'application quotidienne de la médecine.

Aux chefs et amis qui m'ont pris sous leur aile : Pauline, Charlyne, Elias, Hélène, Paul, Marie, Maÿlis.

Aux co-internes et amis qui ont pris leur envol : Anaëlle, Bleuenn, Mathilde et Mathieu ; et à ceux qui prennent leur élan : Maria et Justine.

À Rodolphe qui m'a suivi hors du nid. À Anna qui a migré bien loin. À Anne et Clara.

Aux amis nantais et au GEP : Nora, Céline, Audrey, Vincent, Maxime, Juliette, Sarah, Solène, Morgane, JB, Laurent... Un bon GEP vaut mieux qu'un long discours.

À ceux qui ont partagé les bancs des amphis, les salles de cours, les rayons de la B.U. et tellement plus : Chrystel, Chloé, Thomas, Mathilde C, Marie, Maëlle, Mathilde P, Marion...

A ceux qui ont partagé semestres et internats, et à ceux que je n'ai pas mentionné (place particulière dans les albums photos des dernières années) ...

A mes parents, ma sœur et mes grands-parents, pour leur présence et leur soutien inconditionnel dans les épreuves ou les joies.

List of abbreviations

95%IC	95% Confidence Interval
BMI	Body Mass Index
CT	Computed Tomography
HbA1c	Glycated Hemoglobin
IQR	Interquartile Range
MRI	Magnetic Resonance Imaging
NEN	Neuroendocrine Neoplasm
OR	Odds Ratio
US	Ultrasound
WHO	World Health Organization

Plan

LIST OF ABBREVIATIONS

ABSTRACT

INTRODUCTION

MATERIALS AND METHODS

1. Study population

2. Study measurements

- a. Diabetic related features
- b. Covariates
- c. Radiological exploration: indication, type and results

3. Statistical analysis

RESULTS

1. Clinical characteristics of the overall population

2. Factors associated with imaging screening

3. Factors associated with neoplasm diagnosed by imaging

- a. Baseline characteristics
- b. Comparisons between patients with or without neoplasm
- c. Univariate and multivariate analysis
- d. Comparisons between patients with pancreatic or non-pancreatic neoplasm

DISCUSSION AND CONCLUSION

BIBLIOGRAPHY

LIST OF TABLES

TABLE OF CONTENTS

ANNEXES

SHOULD WE SCREEN FOR CANCER BY IMAGING IN RAPID DETERIORATION OF GLYCEMIC CONTROL IN DIABETIC PATIENTS?

A MONOCENTRIC FRENCH EXPERIENCE.

Doit-on dépister par l'imagerie un cancer chez un patient diabétique en déséquilibre hyperglycémique ?

Une évaluation monocentrique française.

ABSTRACT

Context: Epidemiological data suggest that cancer incidence is associated with diabetes mellitus itself, and that metabolic anomalies observed during diabetes may have a critical role in carcinogenesis.

Objective: Describe the occurrence of radiologically detected neoplasm in case of acute hyperglycemic disequilibrium, and describe the predictive factors.

Design: French monocentric retrospective study recruiting patients during a period of 2 years.

Setting: Angers University Hospital, Diabetology department.

Patients: Preexisting or newly diagnosed diabetic patients hospitalized for deterioration of glycemic control. Patients with active malignancy or other main reason for glycemic imbalance (organ failure, sepsis...) were not included.

Intervention: None.

Main Outcome Measure: Assess the subjective criteria leading to radiological exploration for cancer detection, describe the neoplasms found, and identify predictive factors associated with neoplasm.

Results: 683 patients were included. 183 patients (26.8%) were screened with radiological exploration. Screened population was significantly older, had insulinopenia signs (ketosis, weight loss, cardinal syndrome). HbA1c level was higher and their diabetes was more frequently newly diagnosed. Among them, 23 patients (12.6% of screened population and 3.4% of overall population) had neoplasm (7 pancreatic neoplasms, 11 abdominal and 5

thoracic). They were significantly older, had lost more weight and glycemic imbalance was more severe. Multivariate analysis confirms that ketoacidosis is associated with a significant risk to find a neoplasm, with adjusted OR of 5.705 (1.504 – 21.644), $p = 0.010$.

Conclusion: Uncontrolled diabetes may appear as indicative of neoplasm, not limited to pancreatic cancer. Particular attention should be paid in patients presenting with ketoacidosis. Early neoplasm detection is important and should include stratification model with bio-clinical and anamnestic criteria, and adapted imaging.

INTRODUCTION

Diabetes mellitus and cancer are frequent and heterogeneous diseases with a major impact on the quality of life and life expectancy. Understanding their mechanisms and their reciprocal influence, even minor, is therefore essential.

In 2016, the French Institute for Public Health Surveillance identified 3.3 million diabetic patients in France, regardless of the etiology (1); and the World Diabetes Report in 2014, approximately 422 million (2). They represent respectively 5% of the French population and 9% of the world population with a clear progression over the years. Similarly, French reports show that incidence of cancers have increased considerably in recent decades (3). In 2018, the total number of new cancer cases is estimated at 382,000 in France (4); and worldwide, 18.1 million cases (WHO) (5)

Experimental data suggest that metabolic anomalies observed during diabetes may have a critical role on the initiation and progression of carcinogenesis (6). Hyperglycemia modifies the expression of proliferation, migration and adhesion genes; and could contribute, by generating advanced glycation endproducts, to stimulate by their chronic activation the production of oxidative stress and inflammation. Endogenous hyperinsulinism could provide growth signals, through insulin and IGF1 receptors, and positively stimulate expansion of cancer (7). Chronic, subclinical inflammation, favored by diabetes and obesity promotes the neoplastic process with high levels of oxidative stress, along with abnormal adipokines production and activation of the pro-inflammatory pathways (6).

Epidemiologic evidence suggests that cancer incidence is associated with diabetes mellitus itself, as well as many diabetes risk factors (8–10). The diabetic population being itself heterogeneous, the metabolic or hormonal anomalies can differ according to the type of diabetes but also confounding factors such as age, sex, obesity, metabolic syndrome, or

even antidiabetic drugs. Several meta-analysis, including Vigneri *et al* in 2009 (11), confirm that diabetes is associated with a higher risk of solid (liver, pancreas, kidney, colorectal) or hematological tumor (non-Hodgkin's lymphoma), and a protective factor against prostate cancer. Noto *et al* in 2011 (12) have conducted a review and meta-analysis of the effect of diabetes mellitus on the incidence and mortality attributable to cancer at any anatomic site. The increased risk of cancer from any cause was estimated to 7 to 10% (12,13). For epidemiological reasons, most studies do not distinguish between types of diabetes. A meta-analysis by Sona *et al* in 2018 (14), bringing together nearly two million Type 1 diabetics, found nearly 32,000 cancers, with an increased risk of solid cancer (thyroid, lung, esophagus, stomach, pancreas, liver, ovary, endometrium, kidney) and lower risk of breast cancer.

The strongest association is observed for pancreatic cancer (RR: 1.73 [1.59 – 1.88]), a key organ in carbohydrate metabolism (11,12,15). The risk of undiagnosed pancreatic cancer in case of diabetes justified the suggestion of screening in case of diabetes appearing at a mature age (45-50 years), with no family history of diabetes, and normal weight patient; this association is particularly strong in the first year of diagnosis, decreases in the second year, but remains elevated thereafter (16–19). However, there is no official recommendation in France that imaging should be routinely performed in such cases.

Unlike pancreatic cancer, there is no incitation to screening for other types of cancer in absence of organ-specific sign directing imaging (20). It has been shown that early detection improves the prognosis of resectable cancer, however cancerous patients with diabetes are often treated with less aggressive cancer strategy and have higher mortality (13,21).

The main hypothesis put forward is that uncontrolled diabetes (at diagnosis or during its evolution) may appear as a symptom of any neoplasm. The suggestion for detection of

pancreatic cancer has influenced professional practices and tends to similar reasoning for detection of other types of cancer. The aim of this real-life clinical study is to assess the professional practices in our Diabetes Center for the radiological detection of cancer in patients hospitalized for rapid deterioration of glycemic control. The aims of this study are to determine the subjective criteria leading to radiological exploration, to analyze the results of imaging and then to identify predictive factors associated with neoplasm in this specific population.

MATERIALS AND METHODS

1. Study population

This study was carried out retrospectively on charts of patients hospitalized in the department of Diabetology in Angers University Hospital, France, between November 2016 and November 2018. Men and women hospitalized for discovery of diabetes mellitus or for decompensated diabetes were included. We classified hospitalization's motivation according to type of diabetes disequilibrium: discovery or pre-existence. For diabetes discovery, diagnosis was made prior to hospitalization in our center, according to the recommendations in force (22): venous fasting blood glucose > 1.26 g/l twice, or non-fasting > 2.0 g/l; and they were hospitalized because of severe hyperglycemia. For those patients, type of diabetes was not specified because sometimes uncertain at the time of admission. Others were classified with preexisting diabetes if mentioned in medical history or treated with glucose-lowering drugs. Patients not included were those with known active malignant neoplasm, with recurrent hypoglycemia, or hospitalized for an obvious main reason likely to cause hyperglycemic imbalance (diabetic foot ulcer, sepsis, organ failure...).

The retrospective data collection was registered to the *Commission Nationale de l'Informatique et des Libertés* (CNIL, n° 2018-046), according to French laws and from Ethics Committee (n° 2020/33).

2. Study measurements

We retrospectively collected data from the computerized medical record.

a. Diabetic-related features

Diabetic related characteristics were collected: severity of glycemic imbalance defined as hyperglycemia, ketosis (capillary ketonemia > 1 mmol/l) or ketoacidosis (blood pH level < 7.38), presence of cardinal syndrome (polyuria-polydipsia syndrome and asthenia) or weight loss (percentage of weight lost compared to usual weight and its duration before hospitalization), glycated hemoglobin level (HbA1c) and its kinetics compared with the most recent measure up to one year back. Type and duration of diabetes were described in case of preexisting diabetes. New Onset Diabetes associates recent discovery of diabetes and preexisting diabetes with duration of 2 years or less. The micro- or macrovascular diabetes complications were defined on one hand by retinopathy, neuropathy or nephropathy, and on the other hand by a history of cardiac or cerebrovascular event or by a distal arteriopathy (mentioned in the report). Glucose-lowering drugs were not collected except for insulin therapy.

b. Covariates

The main demographic characteristics of the patient were specified: age, sex, Body Mass Index (BMI). We recorded also medical history of neoplasm (patients were included only if cancer was considered non active or in remission) and we specified pancreatic illness (acute or chronic calcifying pancreatitis, history of surgery or benign neoplasm). Chronic alcohol misuse (declared as consuming more than 2 drinks per day, or weaned for less than 3 years), tobacco use (active or weaned for less than 3 years) and sedentary behavior (mentioned in record) were collected.

c. Radiological exploration: indication, type and results

The indication for imaging was determined by a team of the diabetologists of the department sharing the same main subjective criteria; such as New Onset Diabetes, signs of

insulinopenia (ketosis or ketoacidosis), seriousness of unexplained weight loss or asthenia, kinetics of hyperglycemia evaluated by the recent changes in HbA1c, and other clinical criteria such as age, BMI or the presence of other risk factors for cancer, or any other anamnestic, clinical or biological sign according to the decision of the practitioners.

All first imaging procedures were performed in the department of Radiology; it comprises ultrasound (US), computed-tomography scan (CT), magnetic resonance imaging (MRI). Others were performed if oriented by organ-specific clinical or biological symptom. Results were given by radiologist's report without double reading.

3. Statistical analysis

The first step consisted of comparing in the overall population those who had or not imaging in search of neoplasm. The second step consisted in splitting the screened subpopulation according to the presence or absence of neoplasm after the radiological exploration.

All quantitative variables were expressed as median with interquartile range [IQR] because variables were mainly skewed as tested with the Shapiro-Wilk test. Continuous variables were compared among groups with the Wilcoxon rank sum test. Categorical data were given as number of patients (percentage) and proportions ($n > 5$) were compared with the Chi-squared test, otherwise Fisher exact test was applied. To explore the risk to find a neoplasm by means of radiological exploration, all the assessed variables were tested through univariate logistic regression. Significant variables were entered in the multivariable logistic regression model, adjusted with age, BMI, sex or other clinically relevant variables, in order to explain that risk. Correlations of the explanatory variables and the standardized

residuals have been checked. The analysis was two-sided and considered statistically significant at 5%. Statistical analysis was performed with SPSS v.24 (IMB corp. USA).

RESULTS

We included 683 patients with diabetes mellitus admitted in the period between 1st November 2016 and 1st November 2018. A total of 183 patients (26.8%) had imaging investigations. Among them, 23 patients (12.6%) were diagnosed with neoplasm through those explorations, representing 3.4% of the overall population.

1. Clinical characteristics of the overall population

Demographic and diabetes-related features of the overall population are presented in **Table I**. Median age was 57 years [44 – 69] from 15.5 to 95.3 years. Men represented 55.2% of patients. Median BMI was 28.6 kg/m² [23.9 – 33.6].

At admission, 26.2% of the population was hospitalized at diagnosis of diabetes, and the others for uncontrolled preexisting diabetes. These were mainly represented by Type 2 diabetes (74.2%) and a smaller proportion by Type 1 diabetes (18.1%); remaining 7.7% were mostly secondary to pancreatopathy (17 patients) or corticosteroid therapy (13 patients). Median duration of evolution was 10 years [4 – 18]. New-onset diabetes represents 39.7% of the population, bringing together 179 new diagnosis and 88 preexisting diabetes for less than 2 years. Insulin therapy concerned 39.9% of patients at admission.

Ketosis and ketoacidosis represented 11.1% and 7.0% of the overall population, respectively. The majority of patients did not meet these criteria and were considered with isolated hyperglycemia (81.8%). Subjective signs of insulinopenia like weight loss were inconstantly found in the medical records (available data in 195 patients, 28.6%). A total of 37.6% of patients declared a cardinal syndrome. The median HbA1c level was 10.7% [9.2 – 12.4]. In cases of uncontrolled diabetes, the degree of variation in HbA1c was available in 338 patients (67.1%), with a median change of 0.8% [-0.1 – 2.4]; 32.0% of patients had a

Table I.

Characteristics of overall population.
Analysis of primary outcome: characteristics of patients with or without radiological screening.

Data are presented as numbers/available data (%) or median [IQR: interquartile range].
P-value is presented in bold text if significant < 0.05 .

	Overall population (n = 683)	No screening (n = 500)	Imagery screening (n = 183)	p-value
Demographic characteristics				
Sex (male), n (%)	377/683 (55.2)	268/500 (53.6)	109/183 (42.4)	0.165
Age (years), median [IQR]	57 [44 – 69]	56 [40 – 67]	63 [52 – 73]	< 0.001
BMI (kg/m ²), median [IQR]	28.6 [23.9 – 33.6]	28.5 [23.7 – 34.1]	28.7 [24.1 – 32.6]	0.716
Lifestyle				
Alcohol misuse, n (%)	85/639 (13.3)	48/459 (10.0)	37/180 (20.6)	0.001
Tobacco use, n (%)	203/653 (31.1)	145/474 (30.1)	58/179 (32.4)	0.656
Sedentary behavior, n (%)	406/544 (74.6)	302/405 (74.6)	104/139 (74.8)	0.953
Medical History				
Pancreatic disease, n (%)	42/683 (6.2)	26/500 (5.2)	16/183 (8.7)	0.088
Neoplasm, n (%)	59/683 (8.6)	38/500 (7.6)	21/183 (11.5)	0.110
Diabetes-related characteristics				
Reason for hospitalization				0.006
Diabetes diagnosed on admission, n (%)	179/683 (26.2)	117/500 (23.4)	62/183 (33.9)	
Uncontrolled diabetes, n (%)	504/683 (73.8)	383/500 (76.6)	121/183 (66.1)	
-Type of diabetes				0.079
2	374/504 (74.2)	279/383 (72.8)	95/121 (78.5)	
1	91/504 (18.1)	77/383 (20.1)	14/121 (11.6)	
Other	39/504 (7.7)	27/383 (7.0)	12/121 (9.9)	
-Duration (years), median [IQR]				0.063
≤ 2 years, n (%)	10 [4 – 18]	10 [4 – 18]	8 [2.5 – 15]	0.018
88/494 (17.8)	58/374 (15.5)	30/120 (25.0)		
267/673 (39.7)	175/491 (35.6)	92/182 (50.5)	< 0.001	
New Onset Diabetes, n (%)				
Diabetes complications				
Microvascular, n (%)	203/683 (29.7)	145/500 (29.0)	58/183 (31.7)	0.495
Macrovascular, n (%)	156/683 (22.8)	115/500 (23.0)	41/183 (22.4)	0.870
Insulin therapy at admission, n (%)	273/683 (39.9)	235/500 (47.0)	38/183 (20.8)	< 0.001
Imbalance stage				
Hyperglycemic, n (%)	559/683 (81.8)	421/500 (84.2)	138/183 (75.4)	0.026
Ketosis, n (%)	76/683 (11.1)	47/500 (9.4)	29/183 (15.8)	0.008
Ketoacidosis, n (%)	48/683 (7.0)	32/500 (6.4)	16/183 (8.7)	0.018
Cardinal syndrome, n (%)	257/683 (37.6)	147/500 (29.4)	110/183 (60.1)	< 0.001
Patient with weight loss, n (%)	166/195 (85.1)	83/102 (81.3)	83/93 (89.2)	0.123
% of weight loss, median [IQR]	8 [6 – 12] (n = 166)	7 [5 – 10] (n = 83)	9 [6 – 13] (n = 83)	0.025
duration (month), median [IQR]	2 [1 – 6]	2 [0.88 – 3]	3 [1 – 6]	0.006
0 – 1 month, n (%)	53/152 (34.9)	31/71 (43.7)	22/81 (27.2)	
> 1 – 6 months, n (%)	74/152 (48.7)	34/71 (47.9)	40/81 (49.4)	
> 6 months, n (%)	25/152 (16.4)	6/71 (8.5)	19/81 (23.5)	
HbA1c (%), median [IQR]	10.7 [9.2 – 12.4] (n = 677)	10.3 [9.0 – 12.1] (n = 497)	11.5 [10.2 – 12.8] (n = 180)	< 0.001
HbA1c variation (%), median [IQR]	0.8 [-0.1 – 2.4]	0.3 [-0.4 – 1.4]	2.7 [1.2 – 4.7]	< 0.001
< 1 %, n (%)	187/338 (55.3)	167/246 (67.9)	20/92 (21.7)	
1 – 1.9 %, n (%)	43/338 (12.7)	30/246 (12.2)	13/92 (14.1)	
2 – 3.9 %, n (%)	59/338 (17.5)	32/246 (13.0)	27/92 (29.3)	
≥ 4 %, n (%)	49/338 (14.5)	17/246 (6.9)	32/92 (34.8)	

2. Factors associated with imaging screening

Subjective analysis of each cases led to the realization of 183 explorations by imaging, which represent 26.8% of the patients. Most of them received at least an abdomino-pelvic or thoraco-abdomino-pelvic CT, 22.4% and 63.4%, respectively. The remaining 14.2% (26/183) did not have a complete abdominal-CT (abdominal US only: 22/183 (12.0%), or CT-colonography, angioMRI, biliary MRI, chest-CT alone).

Participant characteristics according to presence or absence of imaging are described in

Table I.

Patients who underwent imaging were significantly older (median age: 63 [52 – 73] vs 56 [40 – 67] years, $p < 0.001$) and alcohol misuse was more frequent (20.6% vs 10.0%, $p = 0.001$). Other demographic characteristics, including sex and BMI, were not significantly different.

Imaging was performed more frequently in case of diabetes discovery (33.9% vs 23.4%, $p = 0.006$) or New Onset Diabetes (50.5% vs 35.6%, $p < 0.001$), rather than for uncontrolled preexisting diabetes. There was no significant difference for type, duration and complications. Severity of glycemic imbalance was significantly different ($p = 0.026$), with less isolated non-ketotic hyperglycemia (75.4% vs 84.2%, $p = 0.008$), and more with ketosis (15.8% vs 9.4%, $p = 0.018$). Ketoacidosis was not a significant criterion for radiological exploration ($p = 0.089$).

There were more patients with cardinal syndrome (60.1% vs 29.4%, $p < 0.001$) and weight loss was deeper (median: 9 [6 – 13] vs 7 [5 – 10] % of weight loss, $p = 0.025$). Median HbA1c was also higher (11.5 [10.2 – 12.8] vs 10.3 [9.0 – 12.1] %, $p < 0.001$), as was its increase (median: 2.7 [1.2 – 4.7] vs 0.3 [-0.4 – 1.4] %, $p < 0.001$).

3. Factors associated with neoplasm diagnosed by imaging

Those radiological explorations led to the diagnosis of 23 cases of neoplasms.

a. Baseline characteristics

Global characteristics are represented in **Table II**, and individual characteristics are detailed in **Table III**. Men represent 60.9% of patients.

Nineteen patients received thoraco-abdomino-pelvic CT. The 4 remaining patients had abdomino-pelvic CT (2 patients), CT-colonography (oriented by iron deficiency anemia) or renal angioMRI (oriented by chronic renal failure and pulmonary edema). Other explorations have been led consecutively to screening results or organ-specific sign. The most represented neoplastic site was the pancreas with 7 patients affected: 4 adenocarcinomas and 3 neuroendocrine neoplasms (NEN), one of each already metastatic to the liver. There were 11 cases of non-pancreatic abdominal neoplasm (liver, kidney, prostate, lower digestive guts, adrenal gland, uterus), and 5 thoracic neoplasms represented by 4 pulmonary cancers (including one NEN) and one esophageal NEN; totalizing 5 neuroendocrine neoplasms.

Nine of all patients were immediately metastatic (39.1%) at diagnosis.

b. Comparisons between patients with or without neoplasm

Patients with neoplasm were significantly older (median: 72 [58 - 80] vs 62 [51 - 71.3] years, $p = 0.021$). They declared weight loss more frequently (90.9% vs 89.0%, $p = 0.009$) and had a lower BMI (median: 26.3 [23.5 - 28.4], vs 29.2 [24.3 - 32.8] kg/m², $p = 0.041$). Most of assessed diabetes characteristics were not significantly different between the subpopulations, such as reason for hospitalization, type and duration of diabetes, cardinal syndrome, HbA1c and HbA1c increase. Four neoplastic patients (17.4%) were admitted for

the recent diagnosis of diabetes mellitus; the other for uncontrolled pre-existing diabetes, with 15 Type 2 (65.2%).

The severity of disequilibrium was significantly different ($p = 0.032$) with more ketoacidosis (21.7% vs 6.9%, $p = 0.018$), and less isolated non-ketotic hyperglycemia (56.5% vs 78.1%, $p = 0.024$).

Table II. Analysis of screened population: characteristics of patients with or without neoplasm.

Data are presented as numbers/available data (%) or median [IQR: interquartile range]. P-value is presented in bold text if significant < 0.05 .

Demographic characteristics	No diagnosis (n = 160)	Neoplasm diagnosis (n = 23)	p-value
Sex (male), n (%)	95/160 (59.4)	14/23 (60.9)	0.891
Age (years), median [IQR]	62 [51 – 71.3]	72 [58 – 80]	0.021
BMI (kg/m ²), median [IQR]	29.2 [24.3 – 32.8]	26.3 [23.5 – 28.4]	0.041
Lifestyle			
Alcohol misuse, n (%)	31/157 (19.7)	6/23 (26.0)	0.482
Tobacco use, n (%)	54/156 (34.6)	4/23 (17.4)	0.151
Sedentary behavior, n (%)	91/123 (74.0)	13/16 (81.3)	0.761
Medical History			
Pancreatic disease, n (%)	14/160 (8.8)	2/23 (8.7)	0.999
Neoplasm, n (%)	19/160 (11.9)	2/23 (8.7)	0.999
Diabetes-related characteristics			
Reason for hospitalization			
Diabetes diagnosed on admission, n (%)	58/160 (36.3)	4/23 (17.4)	0.099
Uncontrolled diabetes, n (%)	102/160 (63.8)	19/23 (82.6)	
-Type of diabetes			
2	80/102 (78.4)	15/19 (78.9)	
1	11/102 (10.8)	3/19 (15.8)	
Other	11/102 (10.8)	1/19 (5.3)	
-Duration (years), median [IQR]	7 [2 – 15]	10 [5.5 – 15]	0.374
≤ 2 years, n (%)	26/101 (25.7)	4/19 (21.1)	0.664
New Onset Diabetes, n (%)	84/159 (52.8)	8/23 (34.8)	0.105
Diabetes complications			
Microvascular, n (%)	48/160 (30.0)	10/23 (43.5)	0.194
Macrovascular, n (%)	34/160 (21.3)	7/23 (30.4)	0.323
Insulin therapy at admission, n (%)	33/160 (20.6)	5/23 (21.7)	0.902
Imbalance stage			
Hyperglycemic, n (%)	125/160 (78.1)	13/23 (56.5)	0.032
Ketosis, n (%)	24/160 (15.0)	5/23 (21.7)	0.024
Ketoacidosis, n (%)	11/160 (6.9)	5/23 (21.7)	0.408
Ketoacidosis, n (%)	11/160 (6.9)	5/23 (21.7)	0.018
Cardinal syndrome, n (%)	99/160 (61.8)	11/23 (47.8)	0.506
Patient with weight loss, n (%)	73/82 (89.0)	10/11 (90.9)	0.010
% of weight loss, median [IQR]	9 [6 – 13] (n = 73)	9.5 [6.3 – 13.8] (n = 10)	0.528
duration (month), median [IQR]	2 [1 – 6]	6 [1.6 – 6]	0.782
0 – 1 month, n (%)	20/71 (28.2)	2/10 (20.0)	
> 1 – 6 months, n (%)	34/71 (47.9)	6/10 (60.0)	
> 6 months, n (%)	17/71 (23.9)	2/10 (20.0)	
HbA1c (%), median [IQR]	11.6 [10.4 – 12.8] (n = 157)	10.4 [9.3 – 12.6]	0.164
HbA1c variation (%), median [IQR]	2.8 [1.2 – 4.7]	2.1 [1.3 – 4.7]	0.846
< 1 %, n (%)	18/84 (21.4)	2/8 (25.0)	
1 – 1.9 %, n (%)	12/84 (14.3)	1/8 (12.5)	
2 – 3.9 %, n (%)	25/84 (29.8)	2/8 (25.0)	
≥ 4 %, n (%)	29/84 (34.5)	3/8 (37.5)	

Table III. Neoplasms characteristics.

Sex	Age (years)	BMI (kg/m ²)	Diabetes at admission	Type	Severity of imbalance	HbA1c (%)	Imagery	Site	Extension
Female	57	26,7	Uncontrolled	2	Hyperglycemic	13,7	TAP-ct	Pancreas, neuroendocrine	Localized
Male	65	33,4	Uncontrolled	2	Ketoacidosis	12	TAP-ct	Pancreas, neuroendocrine	Localized
Male	49	20,2	Uncontrolled	1	Ketoacidosis	11,9	CTAP-ct, ORL endoscopy, OGDS	Liver	Undetermined
Male	82	29,4	Diagnosed	/	Hyperglycemic	13,1	TAP-ct	Pancreas	Localized
Male	81	21,6	Uncontrolled	2	Hyperglycemic	9,5	CTAP-ct	Colon	Metastatic
Female	80	28,7	Uncontrolled	2	Hyperglycemic	11,4	Renal angiMRI	Kidney	Localized
Female	74	36,5	Uncontrolled	2	Hyperglycemic	9,4	TAP-ct	Pancreas	Localized
Male	72	39,1	Uncontrolled	2	Ketosis	14,2	TAP-ct	Pancreas	Locally advanced
Female	56	24,4	Diagnosed	/	Hyperglycemic	6,5	CTAP-ct	Lung, neuroendocrine	Localized
Male	63	26,3	Uncontrolled	2	Hyperglycemic	9,4	TAP-ct	Esophagus, neuroendocrine	Metastatic (lymph nodes)
Female	83	27,9	Uncontrolled	2	Hyperglycemic	10,2	CTAP-ct	Adrenal gland	Localized
Male	48	20,7	Uncontrolled	1	Ketosis	13,2	AP-ct, Echo-endoscopy	Pancreas, neuroendocrine	Metastatic (liver)
Male	52	23,1	Uncontrolled	PC	Hyperglycemic	8,5	TAP-ct, biliary MRI	Liver	Localized
Female	89	24,7	Uncontrolled	2	Hyperglycemic	8,7	ct-colonography	Caecum	Metastatic
Male	75	23,2	Uncontrolled	2	Ketosis	8,7	CTAP-ct	Lung	Metastatic
Male	55	28,1	Uncontrolled	2	Ketosis	9,2	Abdominal US, TAP-ct	Bones, liver, peritoneum, skin: undetermined primary site	Metastatic
Female	80	24,6	Uncontrolled	2	Hyperglycemic	12,6	TAP-ct	Lung	Locally advanced
Male	63	23,7	Diagnosed	/	Ketoacidosis	12,8	TAP-ct, Head-ct	Lung	Metastatic (brain)
Female	59	25,7	Uncontrolled	1	Ketoacidosis	7,4	AP-ct	Uterus	Undetermined
Male	73	28,6	Uncontrolled	2	Ketosis	12,6	TAP-ct, prostatic MRI	Prostate	Metastatic (bones)
Male	77	27,4	Uncontrolled	2	Hyperglycemic	12,6	TAP-ct	Kidney	Localized
Female	62	18,4	Uncontrolled	2	Hyperglycemic	9,4	Abdominal US, TAP-ct	Pancreas	Metastatic (liver)
Male	85	26,4	Diagnosed	/	Ketoacidosis	10,4	Abdominal US, TAP-ct	Colon	Metastatic

Abbreviations:

- CTAP-ct: Cerebro-thoraco-abdomino-pelvic computed tomography
- TAP-ct: Thoraco-abdomino-pelvic computed tomography
- AP-ct: Abdomino-pelvic computed tomography
- OGDS: oesogastrroduodenoscopy
- US: ultrasound
- PC: pancreatopathy

c. Univariate and multivariate analysis

Univariate models were conducted, and described in **Table IV**. Among demographic characteristics, age was the only predictor of neoplasm diagnosis, with a 95% CI of 1.040 [1.006 – 1.075], $p = 0.020$. Regarding diabetes related characteristics: reason for hospitalization, type and duration of diabetes were not significantly associated with the risk of neoplasm diagnosis. Nor were the existence of signs of insulinopenia and HbA1c level and HbA1c increase. However, the severity of the disequilibrium was significant, with, on one hand, isolated hyperglycemia associated with absence of neoplasm (95% CI: 0.364 [0.147 – 0.900]) and, on the other hand, ketoacidosis as a risk factor (95% CI: 3.763 [1.174 – 12.060]). Thus, univariate analysis confirms that age, hyperglycemia and ketoacidosis confer a risk, contrarily to lower BMI and weight loss.

Multivariate logistic regression was performed in order to explain the risk to find a neoplasm, and is presented in **Table IV**. OR were adjusted for potential confounders with the main demographic data: age, sex, BMI. Thus, non-ketotic hyperglycemia confers an adjusted OR of 0.330 (0.125 – 0.870) and ketosis does not confer a significant risk. Moreover, correlations between ketoacidosis and uncontrolled preexisting diabetes – although not associated with increased risk – have been investigated, because it's a main criterion guiding diabetes care. These variables are not correlated with each other, and are therefore accepted together in the multivariate model. This gives ketoacidosis in a known diabetic patient an increased risk to find a neoplasm, with an adjusted OR of 5.705 (1.504 – 21.644), while the risk conferred by age is attenuated ($p = 0.070$).

Table IV. Risk of neoplasm detection in screened patients, assessed using univariate and multivariate logistic regression adjusted on variables of interest.

Data are presented as numbers/available data (%) or median [IQR: interquartile range].
P-value and OR are presented in bold text if significant.

Variables	Univariate model			Multivariate models				
	OR (95% IC)	P-value	OR (95% IC)	OR (95% IC)	P-value	OR (95% IC)	P-value	
Sex (male)	0.940 (0.384 – 2.299)	0.891	1.073 (0.401 – 2.865)	0.889	0.937 (0.358 – 2.447)	0.894	0.991 (0.378 – 2.600)	0.985
Age (years)	1.040 (1.006 – 1.075)	0.020	1.039 (1.004 – 1.076)	0.029	1.039 (1.004 – 1.074)	0.028	1.034 (0.997 – 1.073)	0.070
BMI (kg/m ²)	0.930 (0.865 – 1.001)	0.053	0.935 (0.864 – 1.012)	0.097	0.936 (0.865 – 1.013)	0.102	0.927 (0.854 – 1.007)	0.071
Lifestyle								
- Alcohol misuse	1.435 (0.522 – 3.940)	0.484	-	-	-	-	-	-
- Tobacco use	0.398 (0.129 – 1.228)	0.109	-	-	-	-	-	-
- Sedentary behavior	1.524 (0.408 – 5.695)	0.531	-	-	-	-	-	-
Medical History								
- Of pancreatic disease	1.224 (0.529 – 2.832)	0.636	-	-	-	-	-	-
- Of neoplasm	0.959 (0.696 – 1.321)	0.796	-	-	-	-	-	-
Type of Diabetes (Type 2 vs Type 1)	0.688 (0.171 – 2.762)	0.597	-	-	-	-	-	-
Diabetes duration (years)	1.019 (0.978 – 1.062)	0.361	-	-	-	-	-	-
Reason for hospitalization (Uncontrolled diabetes vs Diabetes discovery)	2.701 (0.877 – 8.323)	0.084	-	-	-	2.989 (0.876 – 10.197)	0.080	
Imbalance mode								
- Hyperglycemic	0.364 (0.147 – 0.900)	0.029	0.330 (0.125 – 0.870)	0.025	-	1.648 (0.525 – 5.172)	0.392	-
- Ketosis	1.574 (0.534 – 4.643)	0.411	-	-	-	5.705 (1.504 – 21.644)	0.010	
- Ketoacidosis	3.763 (1.174 – 12.060)	0.018	-	-	-	-	-	
Cardinal syndrome								
Weight loss (% of usual weight)	0.565 (0.235 – 1.359)	0.202	-	-	-	-	-	-
Weight loss duration (month)	1.007 (0.920 – 1.102)	0.883	-	-	-	-	-	-
HbA1c (%)	0.999 (0.928 – 1.075)	0.971	-	-	-	-	-	-
HbA1c variation (%)	0.830 (0.674 – 1.023)	0.080	-	-	-	-	-	-
	0.986 (0.750 – 1.297)	0.921	-	-	-	-	-	-

d. Comparisons between patients with pancreatic or non-pancreatic neoplasm

Within the neoplastic subpopulation, we compared in **Table V** the characteristics of pancreatic and non-pancreatic neoplasms. It appeared that HbA1c level was significantly higher for those with pancreatic neoplasm (median: 13.1 [10.7 – 13.5] vs 9.9 [8.7 – 12.1] %, p = 0.030). Other criteria were not different.

Table V. Comparison between patient with or without pancreatic neoplasm.

Data are presented as numbers/available data (%) or median [IQR: interquartile range]. P-value is presented in bold text if significant < 0.05.

	Pancreatic neoplasm (n = 7)	Other neoplasm (n = 16)	p-value
Demographic characteristics			
Sex (male), n (%)	4/7 (57.1)	10/16 (62.5)	0.999
Age (years), median [IQR]	65 [59.5 – 73]	74 [68.3 – 80.3]	0.442
BMI (kg/m ²), median [IQR]	29.4 [23.7 – 35.0]	25.2 [23.6 – 27.5]	0.198
Lifestyle			
Alcohol misuse, n (%)	1/7 (14.3)	5/16 (31.3)	0.621
Tobacco use, n (%)	1/7 (14.3)	3/16 (18.8)	0.999
Sedentary behavior, n (%)	4/6 (66.7)	9/10 (90.0)	0.518
Medical History			
Pancreatic disease, n (%)	0/7	2/16 (12.5)	0.999
Neoplasm, n (%)	0/7	2/16 (12.5)	0.999
Diabetes-related characteristics			
Reason for hospitalization			0.999
Diabetes diagnosed on admission, n (%)	1/7 (14.3)	3/16 (18.8)	
Uncontrolled diabetes, n (%)	6/7 (85.7)	13/16 (81.3)	
-Type of diabetes			0.999
2	5/6 (83.3)	10/13 (76.9)	
1	1/6 (16.7)	2/13 (15.4)	
Other	0/6	1/13 (7.7)	
-Duration (years), median [IQR]	6 [5.3 – 7.5]	15 [10 – 19]	0.086
≤ 2 years, n (%)	2/6 (33.3)	3/13 (23.1)	0.999
New Onset Diabetes	2/7 (28.6)	6/16 (37.5)	0.679
Diabetes complications			
Microvascular, n (%)	2/7 (28.6)	8/16 (50.0)	0.405
Macrovascular, n (%)	0/7	7/16 (43.8)	0.057
Insulin therapy at admission, n (%)	0/7	5/16 (31.3)	0.272
Imbalance stage			0.999
Hyperglycemic, n (%)	4/7 (57.1)	9/16 (56.3)	0.968
Ketosis, n (%)	2/7 (28.6)	3/16 (18.8)	0.599
Ketoacidosis, n (%)	1/7 (14.3)	4/16 (25.0)	0.656
Cardinal syndrome, n (%)	4/7 (57.1)	7/16 (43.8)	0.667
Individuals with weight loss, n (%)	6/6	4/5 (80.0)	0.455
% of decrease, median [IQR]	9.5 [6.8 – 13]	10 [6.8 – 14]	0.914
duration (month), median [IQR]	6 [1.5 – 6.5] (n = 7)	4 [1.6 – 6]	0.628
0 – 1 month, n (%)	1/7 (14.3)	1/4 (25.0)	
> 1 – 6 months, n (%)	4/7 (57.1)	3/4 (75.0)	
> 6 months, n (%)	2/7 (28.6)	0/4	
HbA1c (%), median [IQR]	13.1 [10.7 – 13.5]	9.9 [8.7 – 12.1]	0.030
HbA1c variation (%), median [IQR]	2.1 [2 – 4] (n = 5)	0.8 [0.4 – 3.8] (n = 3)	0.393
< 1 %, n (%)	0/5	2/3 (66.7)	
1 – 1.9 %, n (%)	1/5 (20.0)	0/3	
2 – 3.9 %, n (%)	2/5 (40.0)	0/3	
≥ 4 %, n (%)	2/5 (40.0)	1/3 (33.3)	

DISCUSSION AND CONCLUSION

This real-life study is the first dedicated to evaluate, through observation of local clinical practices, if rapid deterioration of glycemic control may appear indicative of neoplasm among patients hospitalized either for discovery of diabetes, or for uncontrolled known diabetes. It was elaborated with two main outcomes: 1/ assess the subjective criteria leading to radiological exploration, 2/ identify predictive factors associated with neoplasm in this specific population.

Uncontrolled diabetes as a revealing cause of cancer, although present in the diabetologist minds, has never been supported by a clinical study. This hypothesis was led by two proven facts: diabetes increases the risk of many cancer (11,12,14), and some patients should be screened for pancreatic cancer (19); and by the description of pathophysiological mechanisms (6,7).

First of all, our results confirm part of the untold criteria for carrying out radiological investigations. Through 2 years of data collection and different diabetologists in the same department, results remain consistent. It corresponds with New Onset Diabetes, risk factors of cancer (older patients, alcohol misuse), signs of insulinopenia (ketosis, cardinal syndrome, higher HbA1c and rapid deterioration of glycemic control), or both (larger and longer weight loss). Unexpectedly, ketoacidosis does not appear as a leading criterion; p-value could have been drawn toward non significance because ketoacidosis was more frequent among Type 1 and these patients were less likely to have an exploration from this criterion. Indeed, ketoacidosis is classically associated with uncontrolled Type 1 diabetes mellitus because of poor insulin management or insulinopenia; thus, radiological explorations are rarely conducted. It has been increasingly recognized that it may also occur in Type 2 diabetes

mellitus (23). We cannot compare our population to this study because patients with potential precipitating factors (organ failure, sepsis...) were not included.

Early cancer detection among diabetic patients needs further explorations. Indeed, prevalence and incidence of diabetes are too high and increasing, so that screening all diabetic patients is not cost-effective.

Some studies limit screening to pancreatic cancer among diabetics. While a lot suggests that New Onset Diabetes aged over 50 require routinely pancreatic imaging (24), others tend to develop less irradiating and less expensive methods, studying several potential biomarkers, like Plasma Free Amino Acid profile. Further large prospective study is ongoing in USA (NOD Study) (25). The aims of NOD Study (cohort of 10,000 subjects aged over 50 with New Onset Diabetes) are to estimate the 3 years probability to develop a pancreatic adenocarcinoma, to determine biomarkers for its identification, and then to define screening algorithms.

Sharma *et al* in 2018 (16) described a model to determine pancreatic cancer risk among patients within 3 years New Onset Diabetes (END-PAC model). The overall population is estimated with 1% risk of pancreatic cancer, enhanced or decreased according to 3 supplemental factors: change in weight, change in blood glucose and age at onset of diabetes. Risk increased to 3.6% in high-risk group, requiring explorations and close follow-up; intermediate stratification might need complementary analysis like biomarkers under study. While this study seems promising, false positive appeared in case of steroid use or different malignancy, highlighting the need for overall cancer screening.

It echoes with searching for multi-analyte blood test. CancerSEEK (26) is designed for detection of early stage of eight cancers, common in western populations (ovary, liver, pancreas, colorectum, lung, breast, esophagus, stomach), combining assays for genetic

alterations and protein biomarkers. Further prospective studies are required to establish the clinical utility.

Secondly, among screened patients, those with neoplasms were older, and they declared weight loss most frequently, which is consistent with lower BMI – although still classified in overweight category. We found that ketoacidosis was more frequent. Univariate analysis confirmed that age, isolated hyperglycemia and ketoacidosis confer a significant risk (decreased or increased), unlike BMI and weight loss. Multivariate model showed that adjusted with potential confounders (age, BMI and sex), age impact on neoplastic risk is attenuated. Very interestingly, ketoacidosis, which have not led to carry out radiological explorations, confers on its own a significant adjusted OR of 5.705 in preexisting diabetes.

Ketoacidosis is a marker of insulin deficiency and a potentially lethal complication of diabetes mellitus. It is known to occur in patients with Type 1 but there is now increasing recognition of its occurrence in type 2 or newly diagnosed diabetes (27). In Type 2 diabetes, ketoacidosis is often associated with conditions of extreme stress (infection, intercurrent illness) or poor compliance to therapy. But precipitant factor is not always found, and psychological stress is then considered. Pathophysiological hypothesis link ketoacidosis with Type 2 diabetes mainly through insulinopenia (others include elevation of counter regulatory stress hormones and increase of free fatty acids) (23).

Ketoacidosis is rarely an initial presenting symptom of neoplasm. It has been described in rare endocrine tumors (pancreatic: glucagon-secreting islet cell neoplasm (28), somatostatinoma (29); non pancreatic: acromegaly (30), pheochromocytoma (31), adrenocortical adenoma (32)). Only a few case-reports documented it in pancreatic adenocarcinomas (33–36). Then, diabetes could be newly diagnosed; ancient and neglected;

or ancient with recent change in diabetes pattern. No case-report or clinical study had described other neoplasm and occurrence of ketoacidosis.

In our study, none of the patient with pancreatic adenocarcinomas had ketoacidosis, but it was the case with 5 other patients. Two of them were Type 1 diabetes and were diagnosed with liver and uterine neoplasm, but their extension was undetermined upon hospitalization and need further follow-up. For them, ketoacidosis might be linked with Type 1 rather than neoplasm. One was found with a localized pancreatic NEN currently under surveillance. His diabetes was preexisting and ancient. The last two had ketoacidosis as a presenting symptom of both metastatic lung or colon cancer, and of newly diagnosed diabetes. According to data collection, there was no other precipitating factor.

To our knowledge, they are the first cases to be documented. Further studies are needed to understand the relation between ketoacidosis and neoplasm. Thus, these results may suggest changes in our professional practices, with paying special attention to neoplastic risk of diabetic patients admitted for ketoacidosis.

Reference imaging is different according to the type of cancer (US for endometrial, renal and gallbladder cancer; mammography for breast cancer; CT-colonoscopy for colon cancer; endoscopic US for pancreatic and esophageal cancer; US, CT or MRI for hepatocellular cancer). None of these specific procedures – although improved by technical advances – is suited for overall cancer screening. Plus, associated factors like obesity or impaired renal function might challenge radiologists and result in suboptimal examination (20). The choice of screening method must be considered with cost-effectiveness balance and be as complete and large as possible.

Moreover, cancer screening rate is significantly lower in people with diabetes than in people without diabetes (37,38). All diabetic patients should undergo recommended age- and sex-appropriate cancer screenings to promote primary prevention and early detection.

In our study, all type of imaging was identified. The screening method frequently comprised abdominal imaging (abdomino-pelvic CT), but we showed several thoracic neoplasms (esophageal and pulmonary) that were not looked for in those who did not have chest imaging. Therefore, we think that thoraco-abdomino-pelvic CT should be the preferred screening imaging. Other investigations should be performed if clinical, biological or anamnestic signs point to a specific organ.

There were some methodological strengths and weakness to this study.

The strength of this study was the number of participants with a total of 683 patients. The large number of patients allowed us to obtain interesting significant results in light of the current literature. However, due to the retrospective design, some data of interest were unavailable from some medical records, such as weight loss and the kinetics of HbA1c, not allowing these parameters to be forced in the multivariate model. In addition, HbA1c might not be an optimal criterion to assess long-term glycemic control. Other like glycemic variability, through SD-HbA1c (intrapersonal mean and standard deviation of all recorded glycemic control measurements), may increase risk of cancer (39). Saito *et al* followed 2640 patients; cancer occurred in 12.5% of patients with a median follow-up of 4.1 years. Glycemic variability was significantly associated with malignancy, while mean HbA1c and diabetes duration were not. In our study, variability was not collected and HbA1c kinetic was incomplete.

Data about anti-diabetic drugs were not collected although it has been proven that it could confer an increased risk (insulin, insulin-secretagogues) or a protection (metformin)

against cancer (13,40–43). This study was not intended to assess their impact, but these treatments are potential confounding factors here.

It is a monocentric study, collecting patient data over 2 years. A larger population could have highlighted other criteria described in the literature. In particular, New Onset Diabetes corresponds to a period favorable to the diagnosis of cancer, which is not the case for our screened population even in patients with pancreatic neoplasm.

Our concern about cancer screening for diabetic patients may have led to a bias in modifying practices, through the prescription of more CT-scans, and particularly thoraco-abdomino-pelvic CT. Moreover, the accessibility of imaging (especially CT-scans) has improved in recent years.

Our findings suggest that cancer screening should not be limited to pancreas, and require specific attention in case of ketoacidosis. Other evaluations could result from our study, focusing in particular on the fate of the overall population and the occurrence of neoplasm in those who were not screened and those for whom imaging did not reveal neoplasm.

Thus, associating a stratification model based on bio-clinical and anamnestic criteria, with cancer-specific biomarkers, and adapted, large and complete imaging may be the key to allow an earlier detection and a better prognosis in a growing diabetic population.

BIBLIOGRAPHY

1. Prévalence et incidence du diabète / Données épidémiologiques / Diabète / Maladies chroniques et traumatismes / Dossiers thématiques / Accueil [Internet]. [cited 2018 Jul 7]. Available from: <http://invs.santepubliquefrance.fr/Dossiers-thematiques/Maladies-chroniques-et-traumatismes/Diabete/Donnees-epidemiologiques/Prevalence-et-incidence-du-diabete>
2. OMS | Rapport mondial sur le diabète [Internet]. WHO. [cited 2019 Feb 13]. Available from: <http://www.who.int/diabetes/global-report/fr/>
3. Belot A, Grosclaude P, Bossard N, Jouglé E, Benhamou E, Delafosse P, et al. Cancer incidence and mortality in France over the period 1980-2005. *Rev Epidemiol Sante Publique*. 2008 Jun;56(3):159-75.
4. Cancers [Internet]. [cited 2020 Oct 17]. Available from: <https://www.santepubliquefrance.fr//maladies-et-traumatismes/cancers>
5. Cancer [Internet]. [cited 2020 Nov 17]. Available from: <https://www.who.int/westernpacific/health-topics/cancer>
6. Cignarelli A, Genchi VA, Caruso I, Natalicchio A, Perrini S, Laviola L, et al. Diabetes and cancer: Pathophysiological fundamentals of a 'dangerous affair'. *Diabetes Research and Clinical Practice*. 2018 Sep;143:378-88.
7. Vigneri R, Goldfine ID, Frittitta L. Insulin, insulin receptors, and cancer. *Journal of Endocrinological Investigation*. 2016 Dec;39(12):1365-76.
8. Lin C-M, Huang H-L, Chu F-Y, Fan H-C, Chen H-A, Chu D-M, et al. Association between Gastroenterological Malignancy and Diabetes Mellitus and Anti-Diabetic Therapy: A Nationwide, Population-Based Cohort Study. *PLOS ONE*. 2015 May 15;10(5):e0125421.
9. Giovannucci E, Harlan DM, Archer MC, Bergenfelz RM, Gapstur SM, Habel LA, et al. Diabetes and Cancer: A consensus report. *Diabetes Care*. 2010 Jul 1;33(7):1674-85.

10. Lee M-Y, Lin K-D, Hsiao P-J, Shin S-J. The association of diabetes mellitus with liver, colon, lung, and prostate cancer is independent of hypertension, hyperlipidemia, and gout in Taiwanese patients. *Metabolism*. 2012 Feb 1;61(2):242-9.
11. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. *Endocr Relat Cancer*. 2009 Jan 12;16(4):1103-23.
12. Noto H, Tsujimoto T, Sasazuki T, Noda M. Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis. *Endocr Pract*. 2011 Aug;17(4):616-28.
13. Suh S, Kim KW. Diabetes and Cancer: Cancer Should Be Screened in Routine Diabetes Assessment. *Diabetes Metab J*. 2019;43(6):733-43.
14. Sona MF, Myung S-K, Park K, Jargalsaikhan G. Type 1 diabetes mellitus and risk of cancer: a meta-analysis of observational studies. *Jpn J Clin Oncol*. 2018 May 1;48(5):426-33.
15. Huang Y, Cai X, Qiu M, Chen P, Tang H, Hu Y, et al. Prediabetes and the risk of cancer: a meta-analysis. *Diabetologia*. 2014 Nov;57(11):2261-9.
16. Sharma A, Kandlakunta H, Nagpal SJS, Feng Z, Hoos W, Petersen GM, et al. Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. *Gastroenterology*. 2018;155(3):730-739.e3.
17. Pannala R, Basu A, Petersen GM, Chari ST. New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. *Lancet Oncol*. 2009 Jan;10(1):88-95.
18. Dankner R, Boffetta P, Balicer RD, Boker LK, Sadeh M, Berlin A, et al. Time-Dependent Risk of Cancer After a Diabetes Diagnosis in a Cohort of 2.3 Million Adults. *Am J Epidemiol*. 2016 15;183(12):1098-106.

19. Chari ST, Leibson CL, Rabe KG, Ransom J, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes: a population-based study. *Gastroenterology*. 2005 Aug;129(2):504-11.
20. Klysik M, Garg S, Pokharel S, Meier J, Patel N, Garg K. Challenges of imaging for cancer in patients with diabetes and obesity. *Diabetes Technol Ther*. 2014 Apr;16(4):266-74.
21. Poruk KE, Firpo MA, Adler DG, Mulvihill SJ. Screening for Pancreatic Cancer: Why, How, and Who? *Ann Surg*. 2013 Jan;257(1):17-26.
22. Diabète [Internet]. [cited 2020 Nov 17]. Available from: <https://www.santepubliquefrance.fr/maladies-et-traumatismes/diabete/la-maladie/#tabs>
23. Linfoot P, Bergstrom C, Ipp E. Pathophysiology of ketoacidosis in Type 2 diabetes mellitus. *Diabet Med*. 2005 Oct;22(10):1414-9.
24. Damiano J, Bordier L, Le Berre J, Margery J, Dupuy O, Mayaudon H, et al. Should pancreas imaging be recommended in patients over 50 years when diabetes is discovered because of acute symptoms? *Diabetes & Metabolism*. 2004 Apr 1;30(2):203-7.
25. Mizuno S, Nakai Y, Ishigaki K, Saito K, Oyama H, Hamada T, et al. Screening Strategy of Pancreatic Cancer in Patients with Diabetes Mellitus. *Diagnostics*. 2020 Aug;10(8):572.
26. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. *Science*. 2018 Feb 23;359(6378):926-30.
27. Westphal SA. The occurrence of diabetic ketoacidosis in non-insulin-dependent diabetes and newly diagnosed diabetic adults. *Am J Med*. 1996 Jul;101(1):19-24.
28. Anthony LB, Sharp SC, May ME. Case report: diabetic ketoacidosis in a patient with glucagonoma. *Am J Med Sci*. 1995 Jun;309(6):326-7.

29. Theodoraki A, Khoo B, Hamda A, Grillo F, Meyer T, Bouloux P-MG. Malignant somatostatinoma presenting with diabetic ketoacidosis and inhibitory syndrome: pathophysiologic considerations. *Endocr Pract.* 2010 Oct;16(5):835–7.

30. Dosi RV, Patell RD, Shah PJ, Joshi HK. Diabetic ketoacidosis: an unusual presentation of acromegaly. *BMJ Case Rep.* 2013 Jun 11;2013.

31. Sedhai YR, Reddy K, Patel D, Lozada JA. Unusual case of pheochromocytoma presenting with diabetic ketoacidosis. *BMJ Case Rep.* 2016 Oct 19;2016.

32. Kahara T, Seto C, Uchiyama A, Usuda D, Akahori H, Tajika E, et al. Preclinical Cushing's syndrome resulting from adrenal black adenoma diagnosed with diabetic ketoacidosis. *Endocr J.* 2007 Aug;54(4):543–51.

33. Lin MV, Bishop G, Benito-Herrero M. Diabetic ketoacidosis in type 2 diabetics: a novel presentation of pancreatic adenocarcinoma. *J Gen Intern Med.* 2010 Apr;25(4):369–73.

34. Lee KA, Park KT, Kim WJ, Park TS, Baek HS, Jin HY. Diabetic ketoacidosis as a presenting symptom of complicated pancreatic cancer. *Korean J Intern Med.* 2014 Jan;29(1):116–9.

35. Zhong G, Cross R. Pancreatic adenocarcinoma presenting as first-onset diabetic ketoacidosis. *Med J Aust.* 2015 May 4;202(8):444–5.

36. Markabawi D, Kondapi D, Tambe V, Seth R. When it is not just DKA; diabetic ketoacidosis as a first presentation of pancreatic adenocarcinoma. *The American Journal of Emergency Medicine.* 2018 Sep 1;36(9):1720.e1-1720.e2.

37. Lipscombe LL, Hux JE, Booth GL. Reduced screening mammography among women with diabetes. *Arch Intern Med.* 2005 Oct 10;165(18):2090–5.

38. McBean AM, Yu X. The underuse of screening services among elderly women with diabetes. *Diabetes Care.* 2007 Jun;30(6):1466–72.

39. Saito Y, Noto H, Takahashi O, Kobayashi D. Visit-to-Visit Hemoglobin A1c Variability Is Associated With Later Cancer Development in Patients With Diabetes Mellitus. *Cancer J.* 2019 Aug;25(4):237-40.

40. Pareek KK, Mathur G, Ramchandani GD. Anti-diabetic Agent and Cancer. *J Assoc Physicians India.* 2019 Oct;67(10):66-9.

41. Mekuria AN, Ayele Y, Tola A, Mishore KM. Monotherapy with Metformin versus Sulfonylureas and Risk of Cancer in Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis. *J Diabetes Res.* 2019;2019:7676909.

42. Currie CJ, Poole CD, Gale E a. M. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. *Diabetologia.* 2009 Sep;52(9):1766-77.

43. Wojciechowska J, Krajewski W, Bolanowski M, Kręcicki T, Zatoński T. Diabetes and Cancer: a Review of Current Knowledge. *Exp Clin Endocrinol Diabetes.* 2016 May;124(5):263-75.

LIST OF TABLES

Table I	12
Table II	15
Table III	16
Table IV	18
Table V	19

TABLE OF CONTENTS

LIST OF ABBREVIATIONS	VI
ABSTRACT	2
INTRODUCTION	4
MATERIALS AND METHODS.....	7
1. Study population	7
2. Study measurements	7
3. Statistical analysis	9
RESULTS.....	11
1. Clinical characteristics of the overall population	11
2. Factors associated with imaging screening	13
3. Factors associated with neoplasm diagnosed by imaging	14
DISCUSSION AND CONCLUSION	20
BIBLIOGRAPHY	26
LIST OF TABLES	31
TABLE OF CONTENTS.....	32

Doit-on dépister par l'imagerie un cancer chez un patient diabétique en déséquilibre hyperglycémique ? Une évaluation monocentrique française.

Contexte : Les données épidémiologiques suggèrent que l'incidence du cancer est associée au diabète et que les anomalies métaboliques observées au cours du diabète pourraient avoir un rôle critique sur la carcinogenèse.

But de l'étude : Décrire les modalités de dépistage radiologique de néoplasie en cas de déséquilibre hyperglycémique aigu et en décrire les facteurs prédictifs.

Protocole : Etude rétrospective monocentrique française recrutant des patients sur 2 ans.

Lieu de l'étude : Service de Diabétologie, Centre Hospitalier Universitaire d'Angers, France.

Malades : Diabétiques connus ou nouvellement diagnostiqués hospitalisés pour déséquilibre hyperglycémique. Les patients présentant une néoplasie maligne active ou une autre cause principale de déséquilibre glycémique (insuffisance d'organe, sepsis...) n'ont pas été inclus.

Intervention : Aucune.

Critère de jugement principal : Évaluer les critères subjectifs menant à l'exploration radiologique pour la détection du cancer, décrire les néoplasies retrouvées et identifier les facteurs prédictifs associés.

Résultats : 683 patients ont été inclus. 183 patients (26.8%) ont bénéficié d'une exploration radiologique. La population dépistée était significativement plus âgée, présentait des signes d'insulinopénie (déséquilibre cétoisque, perte de poids, syndrome cardinal). Le taux d'HbA1c était plus élevé et leur diabète était plus souvent de découverte récente. Parmi eux, 23 patients (12.6% des patients dépistés et 3.4% de la population totale) présentaient une néoplasie (7 néoplasies pancréatiques, 11 abdominales et 5 thoraciques). Ces patients étaient significativement plus âgés, avaient perdu plus de poids et présentaient un diabète plus déséquilibré. L'analyse multivariée confirme que l'acidocétose est associée à un risque significatif de retrouver une néoplasie, avec un OR ajusté de 5.705 (1.504 - 21.644), p = 0.010.

Conclusion : Un déséquilibre de diabète pourrait apparaître comme un signe évocateur d'un cancer, d'origine pancréatique ou autre. Une attention particulière doit leur être portée en cas d'acidocétose. Le dépistage précoce de ces néoplasies est important et devrait inclure un modèle de stratification avec des critères bio-cliniques et anamnestiques, et une imagerie adaptée.

Mots-clés : Diabète, Cancer, Dépistage, Acidocétose, Tomodensitométrie

Should we screen for cancer by imaging in rapid deterioration of glycemic control in diabetic patients? A monocentric French experience.

Context: Epidemiological data suggest that cancer incidence is associated with diabetes mellitus itself, and that metabolic anomalies observed during diabetes may have a critical role in carcinogenesis.

Objective: Describe the occurrence of radiologically detected neoplasm in case of acute hyperglycemic disequilibrium, and describe the predictive factors.

Design: French monocentric retrospective study recruiting patients during a period of 2 years.

Setting: Angers University Hospital, Diabetology department.

Patients: Preexisting or newly diagnosed diabetic patients hospitalized for deterioration of glycemic control. Patients with active malignancy or other main reason for glycemic imbalance (organ failure, sepsis...) were not included.

Intervention: None.

Main Outcome Measure: Assess the subjective criteria leading to radiological exploration for cancer detection, describe the neoplasms found, and identify predictive factors associated with neoplasm.

Results: 683 patients were included. 183 patients (26.8%) were screened with radiological exploration. Screened population was significantly older, had insulinopenia signs (ketosis, weight loss, cardinal syndrome). HbA1c level was higher and their diabetes was more frequently newly diagnosed. Among them, 23 patients (12.6% of screened population and 3.4% of overall population) had neoplasm (7 pancreatic neoplasms, 11 abdominal and 5 thoracic). They were significantly older, had lost more weight and had a more decompensated diabetes. Multivariate analysis confirms that ketoacidosis is associated with a significant risk to find a neoplasm, with adjusted OR of 5.705 (1.504 - 21.644), p = 0.010.

Conclusion: Uncontrolled diabetes may appear as indicative of neoplasm, not limited to pancreatic cancer. Particular attention should be paid in patients presenting with ketoacidosis. Early neoplasm detection is important and should include stratification model with bio-clinical and anamnestic criteria, and adapted imaging.

Keywords: Diabetes Mellitus, Neoplasm, Screening, Ketoacidosis, Computed Tomography